Its time we retire Authentication Header (AH) from the IPsec Suite!


Folks who think Authentication Header (AH) is a manna from heavens need to read the Bible again. Thankfully you dont find too many such folks these days. But there are still some who thank Him everyday for blessing their lives with AH. I dread getting stuck with such people in the elevators — actually, i dont think i would like getting stuck with anybody in an elevator, but these are definitely the worst kind to get stuck with.

So lets start from the beginning.

IPsec, for reasons that nobody cares to remember now, decided to come out with two protocols – Encapsulating Security Payload (ESP) and AH, as part of the core architecture. ESP did pretty much what AH did, with the addition of providing encryption services. While both provided data integrity protection, AH went a step further and also secured a few fields from the IP header for you.

There are bigots, and i unfortunately met one a few days ago, who like to argue that AH provides greater security than ESP since AH covers the IP header as well. They parrot this since that’s what most textbooks and wannabe CCIE blogs and websites say. Lets see if securing the IP header really helps us.

When IPsec successfully authenticates the payload, we know that the packet came from someone who knew the authentication key. I would wager that that should be enough to accept the packet. The IP header is just required to route the packet to reach the recipient – its not meant to do anything else. Thats networking 101 really.

IPsec Security Associations are established based on the source and destination addresses and some L4 port information. The receiver matches the incoming packet’s against SPI and inbound selectors associated with the SA. Packet is only accepted if it came from the correct source and destination IP address. If an attacker somehow manages to change the IP header then there are high chances that it will get rejected by IPsec since it will fail the Security Policy Database (SPD) check.  So, what is protecting the header really giving us?

BTW ESP can also protect the IP header if its used in the tunnel mode. So, if someone is really keen on protecting the IP header then ESP in the tunnel mode can also be used. It should however be noted that ESP tunnel mode SA applied to an, say IPv6 flow,  results in at least 50 bytes of additional overhead per packet. This additional overhead may be undesirable for many bandwidth-constrained wireless and/or satellite communications networks, as these types of infrastructure are not over provisioned.

Packet overhead is particularly significant for traffic profiles characterized by small packet payloads (e.g., various voice codecs). If these small packets are afforded the security services of an IPsec tunnel mode SA, the amount of per-packet overhead is increased.

This issue will be alleviated by header compression schemes defined in the IETF.

I have recently published an IETF draft where i explicitly ask for AH to be retired since there is nothing useful that it does that cant be achieved with ESP with NULL encryption algorithm.

Please note that i have absolutely no complaints with AH and the claims that it makes. It does its job really well. Its just that its completely redundant and the world can certainly do with one less protocol to manage.

Retiring AH doesn’t mean that people have to stop using AH right now. It only means that in the opinion of the community there are now better alternatives. This will discourage new applications and protocols to mandate the use of AH. It however, does not preclude the possibility of new work to IETF that will require or enhance AH. It just means that the authors will have to do a real good job of convincing the community on why that solution is really needed and the reason why ESP with NULL encryption algorithm cannot be used instead.

The IETF draft that i have written aims to dispel several myths  surrounding AH and i show that in each case ESP with NULL encryption algorithm can be used instead, often with better results.

Advertisements

About Manav Bhatia

Manav Bhatia is a SDN/NFV dataplane architect at Ionos Networks and has co-authored several IETF standards on routing protocols, BFD, IPv6, security, etc. He is also a member of IETF Routing Area Directorate where he helps the Area Directors review the IETF standards for their impact on the Routing Area. View all posts by Manav Bhatia

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: