Shortest Path First (SPF) Calculation in OSPF and IS-IS

Both OSPF and IS-IS use the Shortest Path First (SPF) algorithm to calculate the best path to all known destinations based on the information in their link state database. It works by building the shortest path tree from a specific root node to all other nodes in the area/domain and thereby computing the best route to every known destination from that particular source/node. The shortest path tree thus constructed, consists of three main entities – the edges, the nodes and the leaves.

Each router in OSPF or an Intermediate System in case of IS-IS, is a node in the SPF tree. The links connecting these routers, the edges. The IP network associated with an IP interface, added into OSPF via the network command is a node, while the IP address associated with an interface thats added in IS-IS is  a leaf. An IP prefix redistributed into OSPF or IS-IS from other routing protocols (say BGP)  becomes a leaf in both the protocols. Inter-area routes are patently, the leaves.

Network Diagram

If you consider the network as shown above, then OSPF would consider routers A, B, C and the network as nodes. This is assuming that the interface associated with has been added into OSPF. The only leaf in the graph would be the IP prefix redistributed into A from some other protocol. IS-IS otoh, would consider routers A, B and C as nodes and networks and as leaves. This seemingly innocuous difference in representation of the SPF tree leads to some subtle differences between the SPF run in OSPF and IS-IS, which can interest a network engineer.

The nodes in the shortest path tree or the graph form the backbone or the skeleton of that tree. Any change there necessitates a recalculation of the SPF tree, while a change in a leaf of the SPF tree does not require a full recalculation. Removing and adding of leaves without recalculating the entire SPF tree is known as Partial SPF and is a feature of almost every implementation of OSPF and IS-IS that i am aware of. This implies that if the link connecting router C to goes down, then a full SPF would be triggered in case of OSPF, and a partial SPF in case of IS-IS.

This shows that the general adage – “Avoid externals in OSPF” should be taken with a pinch of salt and it really depends upon your topology. I have seen networks where ISPs redistribute numerous routes that have a potential to change on a regular basis, as opposed to bringing them via the network command.


o IP routing is integrated into IS-IS by adding some new TLVs which carry IP reachability information in the LSPs. All IP networks are considered externals, and they always end up as leaf nodes in the shortest path tree when IS-IS does a SPF run. All node information, neccessary for SPF calculation is advertised in its IS Neighbors or IS Reachability TLVs. This unambiguously separates the prefix information from the topology information which makes Partial Route Calculation (PRC) easily applicable. Thus IS-IS performs only the less CPU intensive PRC when network events do not affect the basic topology but only affect the IP prefixes.

o Used narrow (6 bits wide) metrics which helped in some SPF optimization. However such small bits proved insufficient for providing flexibility in designing IS-IS networks and other applications using IS-IS routing (MPLS-TE). “IS-IS extensions for Traffic Engineering” introduced new TLVs which defined wider metrics to be used for IS-IS thus taking away this optimization. But then CPU are fast these days and there arent many very big networks anyways!

o SPF for a given level is computed in a single phase by taking all IS-IS LSP’s TLV’s together.


o Is built around links, and any IP prefix change in an area will trigger a full SPF. It advertises IP information in Router and Network LSAs. The routers thus, advertise both the IP prefix information (or the connected subnet information) and topology information in the same LSAs. This implies that if an IP address attached to an interface changes, OSPF routers would have to originate a Router LSA or a Network LSA, which btw also carries the topology information. This would trigger a full SPF on all routers in that area, since the same LSAs are flooded to convey topological change information. This can be an issue with an access router or the one sitting at the edge, since many stub links can change regularly.

o Only changes in interarea, external and NSSA routes result in partial SPF calculation (since type 3, 4, 5 and 7 LSAs only advertise IP prefix information) and thus IS-IS’s PRC is more pervasive than OSPF’s partial SPF. This difference allows IS-IS to be more tolerant of larger single area domains whereas OSPF forces hierarchical designs for relatively smaller networks. However with the route leaking from L2 to L1 incorporated into IS-IS the apparent motivation for keeping large single area domains too goes away.

o SPF is calculated in three phases. The first is the calculation of intra-area routes by building the shortest path tree for each attached area. The second phase calculates the inter-area routes by examining the summary LSAs and the last one examines the AS-External-LSAs to calculate the routes to the external destinations.

o OSPFv3 has been made smarter. It removes the IP prefix advertisement function from the Router and the Network LSAs, and puts it in the new Intra-Area Prefix LSA. This means that Router and Network LSAs now truly represent only the router’s node information for SPF and woudl get flooded only if information pertinent to the SPF algorithm changes, i.e., there is atopological change event. If an IP prefix changes, or the state of a stub link changes, that information is flooded in an Intra-Area Prefix LSA which does not trigger an SPF run. Thus by separating the IP information from the topology information, we have made PRC more applicable in OSPFv3 as compared to OSPF2.

I recently wrote a post that discusses this further.


About Manav Bhatia

Manav Bhatia is a SDN/NFV dataplane architect at Ionos Networks and has co-authored several IETF standards on routing protocols, BFD, IPv6, security, etc. He is also a member of IETF Routing Area Directorate where he helps the Area Directors review the IETF standards for their impact on the Routing Area. View all posts by Manav Bhatia

6 responses to “Shortest Path First (SPF) Calculation in OSPF and IS-IS

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: